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DYNAMIC BUCKLING OF SOME ELASTIC SHALLOW
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WITH HIGH FREQUENCYY

N. C. HuanG

Department of Aerospace and Mechanical Engineering,
University of Notre Dame, Notre Dame, Indiana 46556

Abstract—Dynamic buckling of elastic shallow structures subject to periodic loading is investigated by means
of two simple model structures. When the frequency and the magnitude of the oscillatory load are sufficiently
high, the cycle averaging technique can be employed to formulate an autonomous system for the cycle-averaged
motion of the structure. Energy method is then utilized for determining the upper and lower bounds of the critical
load for dynamic buckling.

INTRODUCTION

Dy~NaMIC buckling of elastic shallow structures has been investigated by many authors
[1-7]. In order to include the effect of small initial geometrical imperfections and small
disturbances in the study, energy method is usually employed. Upper and lower bounds of
the critical load for dynamic buckling can be derived by considering the geometry of the
potential surface in a high-dimensional space of generalized coordinates. Although the
energy method is a powerful tool for treating dynamic stability problems, its application is,
nevertheless, restricted to autonomous systems. Therefore, the energy method can be used
successfully to investigate the dynamic buckling of structures under either step loading or
impulsive loading. When the applied load is periodic in time, the system is non-stationary.
In this case, the energy method cannot be applied directly.

In this paper, we shall consider the dynamic buckling of shallow structures subject to
periodic loading by means of two simple model structures: (1) a two-member simple truss
with a point mass attached to the middle joint and (2) a slightly imperfect shallow sinusoidal
arch supported by two hinges. It is assumed that the frequency of the applied load is suf-
ficiently high that the response of the structure can be regarded as the superposition of a
slow motion and a fast oscillation. Dynamic buckling is then investigated by the time
variation of the cycle-averaged deformation of the structure. Since the cycle-averaged
deformation is autonomous, energy method can be employed in the analysis.

DYNAMIC BUCKLING OF A SIMPLE TRUSS

Let us consider a simple shallow truss of span 2a composed by two identical bars con-
nected by frictionless joints as shown in Fig. 1. A point mass M is attached to the middle
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P{t) = B+ PCOs w!?

FiG. 1. Geometry of an elastic simple truss.

joint. The initial height of the truss is h; and the initial angle of inclination is 8,. Since the
truss is assumed to be shallow, |0y « 1. The truss is deformed by a periodic force
P{t) = P, + P cos wt, where P, is the mean force, P is the amplitude of the oscillatory force,
w is the frequency of the oscillatory force and ¢ is the time. We shall assume that P » P,,.
The deformed height of the truss at any time is denoted by A and the angle of inclination of
the deformed truss is 8. The cross-sectional area of the bar is assumed to be large enough to
prevent the bar from lateral buckling during the deformation. Since the truss is shallow, the
shortening of the bar at any time ¢ is

A=-—2 _ ~ afcos 8 —cos 0,)
cos O, cos
NE 2_p2 ~i 2_ 12
~ 2(00 0%) ~ 2a(ho h?). (1)

The compressive force F in the bar can be found from the equation of motion of the middle
joint. It is

F= %(Mh Py + P cos o). 2)

The bars are assumed to be linearly elastic. Hence A is related to F by the following approxi-
mate relation:

Fa
A~ —, 3
< (3)

where AE is the extensional stiffness of the bar.
Let us introduce the following dimensionless quantities :
h Pya?® Pa?® Ma3\1? AER3\ 1/2
Y= bo=—pm P=gm =0l ps) o T=t0s
h, AEhg AEh§ AEhg Ma
After elimination of F and A from equations (1}{3), we obtain the following equation of
motion for the shallow truss:

da’y
EF+Y —Y+po+pcosQr = 0. 4)
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Equation (4) defines an instationary nonlinear system with Q as the frequency of the forcing
function. In the following, we shall assume that Q >» 1. Put ¢ = Qrand y = 1 — Y. We may
rewrite equation (4) as

.1

J+ g =3y +2y—po—pcos{) =0, (5)
where dot represents the differentiation with respect to £ The general solution of the
linearized equation of equation (5) is

', po p

(2)1/2 .
) ¢+ Bsin q é+?_gl_2

y = Acos cos &, (6)

where 4 and B are constants determined by the initial conditions. Since Q > 1, the sum of
the first three terms in equation (6) is a slowly varying function of £ and the last term can be
expressed approximately as p/Q? cos &.

In the following, we shall assume that the solution of the nonlinear equation (5) with
sufficiently large Q can be expressed as

y = ¢(&)—kcos¢, (7

where ¢(¢) is a slowly varying function of ¢ and k = p/Q?. Equation (7) indicates that the
solution of equation (5) can be obtained by the superposition of a sinusoidal function of
¢ and a slowly varying function of £. This assumption will be justified by the numerical
solution of equation (5). We shall discuss this point later. From equations (5) and (7), we
obtain

N |
o+ 63[(¢>—k cos &)* —3(¢ —k cos &)* +2(¢p —k cos &) —p,] = 0. (8)

In the following, we shall use the cycle-averaging technique [8] for the investigation of
the dynamic buckling of the truss. Multiplying equation (8) by 1/2x d¢ and integrating
from & to &+ 2n, we obtain

1

b+ 52 l@ =126 — 4G +3k) —2p] = O, ©)

where @ is the cycle-averaged value of ¢. Note that ¢ is also a slowly varying function of £,
The intial conditions are

y(0) = yo (10)
and
y(0) = 0. (11)
Hence,
$0) = yo+k = ¢, (12)
and

$(0) = 0. (13)
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Equations (9), (12) and (13) define an autonomous system. Dynamic buckling of the simple
truss can be investigated by the stability analysis of the autonomous system.

The energy equation can be derived from equation (9) by integration, using the initial
conditions, equations (12) and (13). It is

K+U =0, (14
where

K = 1$? (15)

N

and

1 — - ~
U= ﬁ[%(<}54—¢3)—2(¢3—¢3)+%(3k2+4)(¢2—¢5)—(3k2+2po)(¢—¢o)]- (16)

In equations (15) and (16), K is the kinetic energy and U is the potential energy with its base
U =0at ¢ = ¢,. At the moment of extreme cycle-averaged deformation, ¢ = 0. Thus,
by equation (14), we can determine the extreme value of ¢ which is denoted by ¢,,. It is
found that ¢, satisfies the equation

Pn+ (Do —DPL+(PF — 4o + 3k + )P, + 3 — 45 + Bk +4)po —2(3k* +2pg) = 0. (17)

In the following, we shall study the case y, = 0. Thus, we have ¢, = k and equation (17) is
reduced to

$3 +(k—4)P2 +4(k*> —k + 1)b,, + 2(2k> — Sk + 2k —2p,) = O. (18)

For given p, and &, ¢,, can be solved numerically from equation (18). Dynamic buckling
can then be investigated by the k vs. ¢,, curve. Let us first consider the following special
case.

A SPECIAL CASE—SIMPLE TRUSS UNDER PURE OSCILLATORY LOADING

In this special case, P, = 0. Hence p, = 0 and equation (18) can be reduced to
(@m—K) (P +k—2) (b7 — 2, — 2k +4k?) = O. (19)

Equation (19) defines two straight lines and one elliptical curve as shown in Fig. 2. When the
value of k increases from zero, the value of ¢,, varies along the path 04 BCDE. Note that at
the turning points 4 and D, the variation of ¢,, with respect to k changes suddenly from one
pattern to another. At the local maximum point B, the value of ¢, jumps discontinuously.
We shall refer to the points A and D as the points of dynamic bifurcation and the point B as
the point of dynamic snap-through. It can be easily shown that k = ¢,, = 4/5 at 4;
k=(1+5Y%/4 and ¢,, = 1 at B; k = (1+5'?)/4 and ¢, = (7—5'%)/4 at C and k =
¢, =1at D

In order to check the assumption of equation (17), we may solve equation (5) numerically
with p, = ¥(0) = y0) = 0. It can be done by the Runge—Kutta method where the value of
Q is chosen as 50. From the numerical solution of y(£), we can determine the cycle-averaged
value @(&) which is plotted against ¢ in Fig. 3. Next, we can obtain the extreme cycle-
averaged values ¢,, which are given in Table 1. The relation of k and ¢,, determined by
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Fi1G. 3. Response curves §(¢) vs. ¢ for various values of p/Q2.

TABLE 1. ¢,—k RELATION DETERMINED FROM THE NUMERICAL SOLUTION OF EQUATION (5)

k 0.72 0-80 0-88 0-96 1.00 1-04 1-12

P 0.72 0-80 1.12 1.04 1.00 1-04 1-12
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the numerical solution is also shown in Fig. 2 by dark circles. It is seen that these points are
just on the curve 04 BCDE as predicted theoretically. Hence, the assumption of equation (7)
is justified.

It would be interesting to study the bifurcation and snap-through phenomena from ¢(¢)
curves in Fig. 3. It is found that at the points of dynamic bifurcation A and D and the point
of dynamic snap-through B in Fig. 2, the value of ¢ becomes independent of £. This behavior
can be proved easily by substituting the values of k and ¢, at 4, D and B in Fig. 2 into
the equation of motion, equation (9), and the energy equation, equation (14). From these
substitutions, we conclude that ¢ = ¢ = 0 at both the points of dynamic bifurcation and
the point of dynamic snap-through. Hence, the corresponding @(¢) curve remains horizontal
in Fig. 3.

THE GENERAL CASE OF THE TRUSS PROBLEM

In the general case, equation (18) is solved numerically by the Newton—Raphson
iterative process for different values of p,. The results are shown in Fig. 4. The following
conclusions on the dynamic buckling of a shallow truss can be drawn:

1. By using the assumption p >» p,, we may conclude that when p is small, ¢, is
proportional to p. When p reaches a certain critical value, the pattern of the ¢(¢) curve
changes suddenly and dynamic bifurcation occurs.

2. For continuous increment of p, the extreme value of the cycle-averaged deflection
jumps discontinuously and dynamic snap-through occurs.

3. The critical value of p for either dynamic bifurcation or dynamic snap-through is
inversely proportional to the square of the frequency and decreases with increasing mean
load p,.
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FiG. 4. k—¢,, curves for different p,.
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4. The interval of the jump during the dynamic snap-through increases with the mean
load p,.

DYNAMIC BUCKLING OF A SINUSOIDAL SHALLOW ARCH

An elastic shallow arch of span L, cross-sectional area A4, moment of inertia of the cross
section about the neutral axis I, mass per unit length p and initial shape wg(x) is under the
action of a dynamic load g(x, 7) applied at zero time as shown in Fig. 5. The deformed shape
of the arch at any time ¢ is denoted by w(x, t). The equation of motion of the arch is given
in [3] as

EIw™ —wy™)+w" —Ef [(Wo)? —(w)*]dx+q+pw = 0, (20)

x,t)

e e — — F'_'
-— p—

=7 WG h] Wt TS

FiG. 5. Geometry of an elastic shallow arch.

where prime represents the partial differentiation with respect to the space coordinate x
and dot the partial differentiation with respect to t. Since the ends of the arch are supported
by hinges, the boundary conditions are

wo(0) = wo(L) = w(0,1) = w(L, 1) = 0 (21

and
w”(0, ©) = wg(0); w'(L, 1) = wg(L). (22)
We shall assume that the space-wise load distribution is sinusoidal in the first harmonic

and consider only the first and second harmonics for the initial and the deformed shapes of
the arch. Hence, we have

(%) ( Yo s1n + Zg sin 27£x) , (23)
1/2
wx, 1) =2 (:Ii) [ (f) sin =~ +z(t) sin ZTX] (24)
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and
2n*EI[I\'? | nx

q(x) = ‘L“—(Z) p sin R (25)

Denote
n* (EI\'/?
T = P(—p—) t. (26)

Equation (20) can be written as

J+y—yo+tyy*—yi+4z>~4z)+p =0 (27)
and

F4+16(z—zo) +4z(y* — yi +422—423) = 0 (28)

where dot represents the differentiation with respect to 7.

If the initial shape is approximately the first harmonic function of x with a small
geometrical imperfection in a form of the second function of x, then z, = 0* and equations
(27) and (28) become

J+y—yo+yy*—yg+4z8)+p =0 (29)
and
i+ 16z +4z(y*—yi+42%) = 0. (30)

Since the load is applied at ¢ = 0 instantly, we have the following initial conditions for a
sinusoidal arch with small initial imperfections with a shape of a second harmonic function
of x:
W0) =y, 20)=0", y0)=0, Z0)=0. (31)
In our problem, it is assumed that the applied load is periodic in time with a large
dimensionless frequency Q. Hence,
p = ro+rcosQ1, (32)

where r, is the mean value of the applied load which can be considered as a step-function
of time and r is the amplitude of the oscillatory load. In the following, we shall assume that
r > ry. Denote t = wt and (") = J/0t( ). We have the following governing equations of
motion:

1
J+ galy = Yo+ yy? 8 +42%) +ro+rcost] = 0 (33)

and

1
2+ al162-+42(% - y5 +42%)] = 0. (34)

From the solution of the linearized equations of (33) and (34), we may assume that, for
sufficiently large value of w, the solution of equations (33) and (34) can be expressed approxi-
mately as

y=¢@+kcost (35)
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and
z =, (36)

where k = r/Q? and ¢(z) and ¥{1) are slowly varying functions of 7. Substituting equations
(35) and (36) into equations (33) and (34) and applying the cycle-averaging process, we
obtain the following coupled nonlinear differential equations:

o 1 _ - _

o+ 5—23[¢_Yo+70+¢(¢2—)’%+4‘//2)+‘%k29_9] =0 (37)
and

It B8+ 2F 33+ 477+ =, )

where ¢ and ¥ are the cycle-averaged values of ¢ and ¥, respectively. The initial values of
¢ and ¥ can be found from equations (35) and (36). They are

#0) = yo—k = ¢o (39

Y(0) =0 (40)
and

$(0) = Y(0) = 0. (40
Hence, we have

$(0) = ¢, (42)

o) =0 (43)
and

$(0) = §(0) = 0. (44)

Equations (37), (38) and (42)-(44) define an autonomous system. To investigate the stability
of the system, let us first find the equilibrium points of the system which can be derived from
equations (37) and (38) by setting ¢ = Y = 0. Denote the coordinates of the equilibrium
points by (¢,, ¥.). It is found that there are five equilibrium points. The coordinate of three
equilibrium points satisfy

P2+ (1 —y5+3k*)p.+1o—yo = 0 (45)
and
Y. =0, (46)
and the coordinates of the other two equilibrium points are
_Yo—To
o= )

and

1 . 2 kz 1/2
Ve = i{z[yé—(i"z_’;) ]——8—4} : (48)



324 N. C. HuanG

In the following, we shall utilize the method of potential energy surface [ 1, 3] to investi-
gate the upper and lower bounds of the critical valve of k for dynamic instability. The
potential energy U of the system can be obtained easily by the integration of equations (37)
and (38), using the initial conditions equations (42){44). It is

1, _ _ _ _ _
U= b*z[%(d’ — o) + 8P +4(P* — 5+ 4 —(ro— k)P~ )

+3(P% = y5 + k)P — dd + 4P %) — 2Ky 2. (49)

Considering the value of U as the height, we can construct a surface above the ¢— plane.
This surface is referred to as the potential surface. Note that U = 0 at the initial point
(¢o, 0). At the equilibrium points defined by equations (45) and (46), the potential energy
has either maximum or minimum values. Hence, these equilibrium points correspond to
either local maximum or minimum points on the potential surface. There are two stable
equilibrium points at two minimum points of the potential surface and an unstable
equilibrium point at the maximum point of the potential surface. The equilibrium points
defined by equations (47) and (48) are two saddle points on the potential surface.

During the motion of the arch, the point of trajectory moves on the potential surface
in a manner similar to a small ball rolling on a frictionless surface. For given values of
¥ and rq, when the value of k is small, the region of the motion of the ball is restricted to
the neighborhood of the minimum point close to the initial point on the potential surface.
However, when the value of k is sufficiently large, the trajectory may reach the neighborhood
of the far minimum point and dynamic snap-through is thus introduced. Since there is a
hill between two dips on the potential surface, the far minimum point would be reached
in the trajectory if the elevation of the maximum point is equal to or less than the elevation
of the initial point which is zero. Hence, by setting the potential energy zero at the maximum
point, we can obtain an upper bound of the critical value of k for dynamic snap-through.
Note that the far minimum point can also be reached by a trajectory passing through the
neighborhood of the saddle point. Therefore, the lower bound of the critical value of k
for dynamic snap-through can be derived by setting the potential energy zero at the saddle
point.

The upper and lower bounds of the critical values of k for given y, and r, can be found
numerically from equations (45)H49), using a cut-and-try technique. For any value of k,
the locations of equilibrium points are first found from equations (45}+48) and the potential
energy is then calculated according to equations (49). The upper and lower bounds of the
critical value of k are determined from the conditions of zero potentials at unstable
equilibrium points. Numerical computations are carried out for y, = 2, 3, 4 and 5 and
ro = 2,4, 6,8, 10 and 12. The results are given in Table 2 and also shown in Fig. 6, where
k, is the upper bound of the critical value of k and k;, is the lower bound of the critical value
of k. It is found that the lower bound exists only within a certain range of r,. When r is
within the range, for any given y,, k, decreases with increasing r, as we may predict. When
ro is not within the range, the saddle point would vanish before its potential becomes zero.
In this case, there is no lower bound for the critical value of k. It is also found that the upper
bound does not exist for r = 4, 6, 8 and 10. In this case, the maximum point on the potential
surface would disappear before its potential becomes zero. When y, = 5 and r, = 12, the
upper bound of the critical value of k is k, = 2-874. From Fig. 6, it is also noted that when



Dynamic buckling of some elastic shallow structures subject to periodic loading with high frequency 325

TaBLE 2. UPPER AND LOWER BOUNDS OF THE CRITICAL VALUES OF X FOR DYNAMIC SNAP-THROUGH

Yo o k, k;

20 2:0 1.366 -

30 40 - 1-332
30 6-0 - 1.058
30 70 - 0944
4.0 4.0 - 1-350
40 6-0 - 1-134
4.0 80 0-958
4.0 160 - 0799
40 120 - 0-649
50 4.0 - 1-361
50 6-0 - 1-182
50 8.0 - 1-034
50 10-0 - 0901
50 12.0 2.874 0776

3.0 T T T T _/1)
¥, =5
2.0 -
Yo = 3
K=t PA ,/_ °
= Ve T yea
o /— Yo
¥°= s
1.0 -1
O — Indicotes the upper bound value of
the critical value of k.
o I § | 1 1 1
o 2 4 6 8 10 i2 14

o

F1G. 6. Lower bound of critical value of k for dynamic snap-through.

¥o = 2, the lower bound does not exist and the upper bound exists at 7, = 2. In the latter
case, k, = 1-366 is the critical value of k for dynamic snap-through.

Although in this paper we are dealing with elastic arches, the lower bound of the critical
load found here can also be considered as the lower bound of the critical load for arches with
dissipation. Investigations along this line are found in [2-4, 6] and is omitted in this paper.

CONCLUDING REMARKS

1. In this paper, an energy method incorporated with cycle-averaging technique is
introduced for the investigation of stability of instationary systems.
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2. The study of the simple truss problem indicates that the cycle-averaging technique is
good for the analysis of dynamic stability of structures provided the frequency of the load
1s sufficiently high.

3. The paper provides bounds of the critical load for dynamic buckling of elastic shallow
imperfect arches subject to periodic loading.

Acknowledgement—The author wishes to acknowledge the assistance of B. Vahidi in preparing Fig. 3.
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A6crpakT—-Ha ocHoBe OBYX MNPOCTBIX MoAeneH, MCCIenyeTcs AWHAMMYECKOE BBIIYYMBAHHE YIIPYTHX
MOJIOTUX KOHCTPYKUMIE, MOABEPKECHHBIX AeHCTBHIO NIEpHOAMYECKO# Harpy3ku. Korpa wactora u Besmuuna
KkosiebaTenbHOM HArpy3ku AOCTATOYHO BLICOKHE, TOTAA MOXHO NPUMEHHTb METOHA YCPEAHEHHS LIWKJIOB.
C UENbIO OMpeaeNeHUsi HEIaBUCUMOMN CHCTEMB! ANSl [MKJIMYECKM YCPEOHEHHOTO ABWXKEHHS KOHCTPYKLHUH
Hcnonb3yercs, 3aTeM, IJHEPTUYECKUH METOI [UISl ONIPENE/IEHUsA BEPXHETO W HUIKHETO NIpeiesIOB KPUTHYECKOM
HArpy3Ku [IJIs Cjiydas JMHAMHYECKOIO BbITYMBAHHSA.



